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0. OVERVIEW

0.1 SUMMARY

The general theme of the research carried out under this

Grant is the investigation of the connection between local and

global stability properties of free shear flows. In particular, the

connection between absolute instability of locally parallel mean

profiles and global self-excitation has been illuminated.

On the local level, the knowledge of the stability properties

of two-dimensional homogeneous and inhomogeneous (heated) jets and

wakes has been expanded. For the inviscid 2-D jet absolute

instability was found for ratios S-plp of jet p, and ambient

density p. below 0.9 . For the wake the absolute instability

boundary was mapped in the Reynolds number - density ratio plane.

Thereby it was found that low wake density, i.e. heating,

eventually eliminates all local absolute instability. These

calculations were found to be entirely consistent with experiments

in which the Kdrmdn vortex street is suppressed by wake heating.

On a global level, a series of experiments with a 2-D heated

jet at Reynolds numbers of 3,000-7,000 showed that the local

absolute instability does lead to global instability, i.e. self-

excitation at a density ratio of S=0.9 . The bifurcation to global

instability has been identified as a supercritical Hopf bifurcation

by spectral measurements. In addition, a novel and effective way of

locating the critical bifurcation parameter by auto-bicoherence

measurements has been explored. In addition, the flow field has

been documented by Schlieren flow visualization and mean velocity

and temperature measurements.

Theoretically, the global ,r stability of a slowly

diverging inviscid shear flow has be .... -alyzed by WKB methods. The

analysis reveals that the global chara,.eristics are, under certain

assumptions, determined by a region in the complex x-plane (x being

the streamwise direction) where the absolute frequency (the

frequency of the mode with zero group velocity) has a saddle, i.e.

a zero x-derivative. For this region the linearized Ginzburg-Landau

equation was derived from first principles. In further work it has

been used to investigate the effect of single-sensor single-

actuator feedback control on the global behavior of jets and wakes.

.. . . ... .. .. .. . . . .. . . . . . . .1
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1. INTRODUCTION

1.1 PREVIOUS WORK ON VARIABLE DENSITY JETS

Jet stability problems have been investigated extensively because
of its importance, e.g. its role in laminar-turbulent transition and
its relation with the coherent structures in turbulent jets found by
Crow and Champagne (1971). Theoretical studies, involving the effect
of Mach .iumber, Reynolds number, temperature (density) etc. on jet
stability have been surveyed by Michalke (1984). However, experimental
data for inhomogeneous jets have not been fully obtained to verify
theoretical predictions. Recently, problems related to jet engine
exhausts and to combustion have led to a renewed interest in the be-
havior of inhomogeneous (hot) jets which are inertia dominated, i.e.
where buoyancy effects are minimal near the nozzle. The density ef-
fects on 2-D jet stability are reconsidered in this investigation, both

theoretically and experimentally.

Among the studies of density effects on flow stability, Maslowe
& Kelly (1971) studied stratified shear layers under the influence of
gravity and illustrated that density variations can be destabilizing.
Koochesfahani & Frieler (1987) studied shear layers with a wake com-
ponent and found that the wake mode can become comparable or even
stronger than the shear layer mode if the density of the low-speed
stream is larger than that of the high-speed stream. Michalke (1970)
studied spatial instability of the axisymmetric jet for various tem-
perature ratios and Mach numbers and discovered additional instability
modes later related to absolute instability by Monkewitz and Sohn
(1988) who showed that a hot axisymmetric gas jet can develop a region
of local absolute instability in the potential core region if the jet
density is less than 0.72 times the ambient density.

The above stability analyses are based on the assumption of par-
allel flow where stability characteristics are independent of the
streamwise coordinate. In real jets, mean flow profiles diverge with
increasing streamwise coordinate. However, the parallel results can
be viewed as local properties relevent to each streamwise station in
the case where the mean flow variation in the streamwise direction is
slow on the scale of the instability wavelength. In such cases, the
effects of the small variation in streamwise direction can be included
by considering higher order approximations. Crighton & Gaster (1976)
used the multiple-scales method to study the stability of slowly di-
verging axisymmetric jet flow and obtained the streamwise development
of the spatial instability amplitude. In other cases the global sta-
bility characteristics of the entire nonparallel flow field have to
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be investigated. In this context the term global (linear) mode is

understood to be a solution of the formf(x,y,z)exp-kot) where the vector
f contains all dependent variables of the disturbance equation,
linearized around a nonparallel base flow, and subject to suitable
homogeneous boundary conditions.

It has been known that the behavior of homogeneous jets is sen-
sitive to external sound, and is not only determined by the given flow
parameters. However, if a flow develops self-excited (global) oscil-
lations, forcing can become ineffective. Therefore, knowledge of the
global stability characteristics of flow systems is important for a
successful controller design, for instance. Monkewitz, Huerre and
Chomaz (1987) considered a model problem to study the global insta-
bilities in jet and the flow response to external forcing. Corke (1987)
showed that the resonance process in jets can be suppressed or enhanced
by low amplitude external forcing at the natural preferred frequency.
The sensitivity of the jet to external forcing has encouraged the ap-
plication of jet control by acoustic methods, see e.g. Lepicovski et
al. (1988) and Ahuja (1988). Monkewitz (1989a) studied a linear non-
parallel model to predict the effect of (one sensor-one actuator)
feedback control with variable feedback gain and phase shift.

In addition to theoretical analyses, some experiments on the
stability of variable density jet have been conducted. Sreenivasan
et al. (1989) showed the absolute instability in a round Helium jet.
Monkewitz et al. (1989. ref 27 and ref 28) illustrated the self-excited
oscillation in a axisymmetric hot jet and the dramatic spreading of
self-excited hot jet by side jets. Motivated by these studies, the
purpose of this investigation is to understand the density effect on
jet staoility and the resonance phenomena in a 2-D hot jet.

1.2 LOCAL LINEAR STABILITY CONCEPTS

For a nonparallel flow system where mean flow profiles evolve
slowly in the streamwise direction, e.g. 2-D jet/wake flow, the sim-
plest approach for a stability analysis is to apply linear theory at
a certain streamwise station, x, where the mean flow variation in the
streamwise direction can be neglected, i.e. where the parallel flow
assumption is made (Drazin & Reid 1981). Any disturbance quantity is
expressed in normal mode form, for which the dependen,.. me and
downstream distance x is separated out in a factor ex: withx
and w the wavenumber and frequency, respectively. The distribution
of any linear disturbance quantity in the transverse y-direction is
then described by a system of ordinary differential equations derived
from the conservation equations, with suitable boundary conditions at,
say, y0 and oo.

5



The solution of this two-point boundary-value problem is only
possible for certain values o andw, the eigenvalues. The admissible
values are defined by the dispersion relationw= i), which depends on
the mean flow velocity profiles i(y), density profiles;5(y), and any other
relevant flow and fluid properties at the station x. If a real wave
number ) is prescribed, w assumes the role of eigenvalue and the
temporal stability problem is considered. If a real frequency c is
imposed on the system, one speaks of spatial stability. The temporal
case therefore describes the evolution of a spatially periodic pattern
in time, while the spatial theory describes the downstream evolution
of a constant-amplitude harmonic input at some x-station. In addition
to the spatial and temporal cases, x andwo can be both complex, and
describe the spatio-temporal behavior. Which of the theories are to
be used must be decided by considering the start-up process, or more
precisely the evolution of the start-up transient. For this purpose
it is in fact sufficient to consider the asymptotic impulse response
in the limit of large times, as discussed for instance by Huerre and
Monkewitz (1985).

The asymptotic response or Green's function is conviently obtained
in Fourier space, i.e. in terms ofo andw. To obtain the evolution in
time and space of an impulse at say x=0 and t=0, the inverse Fourier
transform must be evaluated. By applying the method of steepest de-
scent, one finds that along each ray x/t=constant, the response is
eventually dominated by the least stable mode with a wave numberoc' and
frequencyvco= (x) satisfying

Along each ray x/t=constant, the dominant mode with wave number a
travels at group velocity equal to x/t and is amplified temporally at
the rate of

Ci= W - ax -{ da ) . (1.2)

Ifa,< 0 for all modes, the flow system is stable. Any small pertur-
bation is suppressed as t-oo and disappears at every x-station. If
a,>0 on some rays, the flow system is unstable. The evolution of an
impulsive pertubation and the nature of stability can be best under-
stood with the x-t diagram in Figure 1. The introduced disturbance
is asymptotically confined between two rays on whicha,=0. Within the
wedge-shaped region, the amplitude of the dominant mode along each ray,
is amplified at the growth rate ,(x*)>0. The largest amplification oc-
curs on the ray associated with the mode the most amplified
temporal mode for which the growth ratea, is maximum. Two cases are

now distinguished according to the behavior of the mode on the ray
x/t=0, i.e. the mode with zero group velocity. In the case that this
mode has positive growth rate as shown on Figure la, the wave packet
travels both upstream and downstream and eventually contaminates the
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whole flow region. In the other case, the growth rate of the mode with
zero group velocity is less than zero, and the wave packet, although
it may be amplified during traveling, is convected downstream. The
flow system at any fixed space location becomes quiet eventually when
t is sufficient large. This means that the response of the flow at
fixed x to the impulsive perturbation is determined by the mode with
zero group velocity

di

Depending on the absolute growth rate w, a flow system is identified
as absolutely unstable if coo>0, and convectively unstable if wo<0. It
is noted that this criterion is not complete and has to be supplemented
by the "pinching requirement" (see Huerre & Monkewitz 1985, for in-
stance) which mandates that the branchpoint c° must arise from the
coalescence of a downstream and an upstream mode.

1.3 GLOBAL STABILITY CONCEPTS

In a nonparallel flow it is the global rather than the locally
parallel behavior that is of practical interest. The stability anal-
ysis discussed in section 1.2 is based on the mean flow data at each
x-station, viewing the flow as a parallel one. The resulting stability
properties depend only parametrically on x and fail to yield a global
frequency selection criterion, for instance. If, however, the computed
local flow properties can be related to the observed global behavior
of the actual nonparallel system, the local stability computation would
provide a relatively simple guide to global behavior.

This connection between the global and local stability behavior
has been investigated by Chomaz, Huerre & Redekopp (1988). From the
analysis of a one-dimensional model problem, considering the streamwise
development of the basic flow and neglecting its cross-stream vari-
ation, they conclude that local absolute instability is necessary but
not sufficient for a global mode to become self-excited, i.e. to grow
in time. They show that a system develops a self-excited response if
a sufficient portion of the flow-field is absolutely unstable on a
locally parallel basis, provided tie nonparallelism of the base flow
is not too severe. In this case the growth of a global mode is due
to (local) upstream feedback by instability waves.

The relation between local and global stability calculations is
also illustrated by Hannemann's numerical simulation of global behavior
in a wake flow, shown in Figure 2. As shown in Figure 2b, the growth
rate in the linear region and the preferred frequency of the global
mode fall into the range predicted by local linear theory.

Analogous to convective and absolute instability in parallel
flows, the instability characteristics of nonparallel flow systems,
can be characterized as "amplifier" and "oscillator" behavior

7



(Monkewitz 1989). If the flow is stable as on Figure 3a, or
convectively unstable in some region as on Figure 3b, all local modes
with frequency w"x) defined at each x by equation (1.3) and consequently
all global modes are time-damped, provided the system contains no ad-
ditional global pressure feedback or active control loop. In other
words, a flow system corresponding to Figure 3b behaves as an "ampli-
fier" that spatially amplifies selected external disturbances with a
nonzero signal to noise ratio, but reverts to an undisturbed state if
the excitation is turned off. On the other hand, if a system, starting
from the undisturbed state, only needs an initial impulse to develop
time-growing oscillations at any fixed location, it is self-excited
and termed an "oscillator". Following the initial exponential growth
of the disturbance, the system in many cases settles into a limit cycle
behavior, e.g. the Karman vortex street in the case of a wake base-flow.
This final nonlinear state generally represents a global respcnse which
is intrinsic to the system and frequently independent of the nature
of the initial impulse.
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2. TIE LOCAL LINEAR STABILITY OF VARIABLE DENSITY 2-D JETS AND WAKES

2.1 MEAN FLOW

For the present investigation, local stability calculations have
been carried out for a two-parameter family of velocity profiles al-

ready used by Monkewitz & Nguyen (1987). It is defined by equation (2.1)
in nondimensional form, using the jet half-width Y,,, and the average
velocityW,. as characteristic length and velocity.

i ,(y) = I - A + 2\ly), (2.1)

A ( 0)- uy = oo)

u'(y = 0) + u"O , = co)

Y) =[I + sinh
2'V (ysinh- 11)]-1

where A is the velocity ratio. A=+ I corresponds to a jet with zero
ambient velocity. N is the shape parameter which controls the ratio
of mixing layer thickness to jet half-width. For large N, i.e. thin
shear layers, the nondimensional maximum-slope thickness is well ap-

proximate by the relation 5_ -'2[,Vsinh-1I] -'. The temperature profile
is assumed to have the same shape as the velocity profile by the
Busemann-Crocco relationship at zero Mach numbe:. The normalized
temperature profile is then given in terms of the normalized velocity

profile Fly) and the density ratio S=p/p_,.

T(y) = 1+( -- 1)1-y). (2.2)
S

The viscosity is related to temperature by

/2 12 + C/l-r
T + Q

where T_ is ambient temperature and C is a constant. Between the jet
exit and the asymptotic region, N is chosen such as to yield the
2-dimensional shear layer spreading rates measured by Brown & Roshko
(1974) in the region where the jet shear layers are thin compared with
the jet width.

• • . II I9



2.2 DISTURBANCE EQUATIONS

Michalke (1970) and Monkewitz & Sohn (1988) carried out the linear
stability analysis of the axisymmetric, inhomogeneous inviscid jet.
The development of the stability analysis in this section is similar
to theirs, except that 2-D viscous flow is being considered.

In addition to parallel flow, several simplifying assumptions are
made. First, nonlinear terms are neglected which limits the analysis
to the small amplitude regime. Second, the mean flow is considered
to be "quasi-laminar". That is, the interaction of the large scale
instability wave with small scale turbulence is neglected as discussed
explicitly by Strange & Crighton (1983). Third, buoyancy is neglected
in the near-field potential core region where inertial forces dominate.
Fourth, the fluid is assumed to be a calorically perfect gas without
heat sources.

Furthermore, only 2-D disturbances are considered in this section
since they are more unstable at zero Mach number than 3-D disturbances
by Squire's transformation (1933).

The equations of motion of a heat-conducting viscous fluid can
be found in text books (e.g. Batchelor 1967). The equations for 2-D
flow in Cartesian coordinates are as follows.

The equation of continuity is

cp + e(p + -NpV 0 (2.3)

at ax ay

The equations of motion are the Navier-Stokes equations. With the
further assumptions of no body force and Stokes' relation A-2/3 P,
the momentum equations in x- and y-directions are

p CU +P p CU +pV CU VP + _ u

at ex+P ay ax x x

2C PU + + 0 ,-, + IV-)] (2.4)
3 ax ay By ay a

and

* av" * ap* a S .+B -- 7v -- + =-C +a -2v
at Bx ey ay ay By"

Cu + +  (2.5)
3 x y a Bx Oy Bx
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The energy equation for a calorically perfect gas is

.aT *aT *aT a OT-* a OT Dp
p~-+u - v -) -c--)+--- )+ 

a t Cx ay Cx Cx Cy ay Dt

2 au

-CU 2 v 2 2( au v2
2,u) - ( + -)(2.6)

ax ay - Oax Cy

The equation of state is

p =p RT (2.7)

Here we denote a dimensional variable by an asterisk superscript.

The dependent variables are decomposed into mean values and small
perturbations in the form,

q=q+q',

and all equations are linearized around the mean values (basic state).
Furthermore, assuming constant Prandtl number and introducing/, Kw,

pTu U ,,i , T1, and y',2 as characteristic viscosity, conductivity,
density, velocity, pressure, temperature and length respectively, the
disturbance equations are obtained in dimensionless form as follows,

1 ap' d a d, np+ (--+ -z-) + --- L ,+a P (2.8)
;T at ax Oy pdy +  ax

a-- -- 7 - _ ( u+ a v;5-1- + p--+ ;5V -U -LL+-[ - _L_~c _L
-ay Ox Re ax 2  3 Ox Ox OY

- t/ av'd+ d7 T ar+ o ¢+ +v ) +uTf_)
oy cy Cx dy dy cy

d- a 'j -v d2 i "

+ + cZ + iry2 ] (2.9)

dy "y cx dy

-v' +--v' ap' +1 a a a2- , 2 a t +
at ax - ay + e - x[% ( Ox ) y y 3 Cy Ox ay

du-f j ' +_ 2, dP V'_ 2 d' ( t O (2.+10),
-Ic-)+ (2.10)

dy Ox dy ay 3 dy ax cy
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dT01 dl' 0l -s 2  ~ T ___

at ax ay Re P Ox2  y 2  dy dy Td

R- deT dT 2 d P'+ T -7, - - 7)+(7 + Uf
dy ay dy dy -aMx O

+ ( -I) 2 ;_4 _.,0 +'. -aX )+ j-7(._ .2 (2.1 L a)

p YIf2
0 _ +- (2.12.b)

P T

where R=, M , __ __= _ a d)A W K _ "R f. d

In case of incompressible flow, M is zero. The equations (2.1l.a)
and (2.12.a) can be reduced to

207 dT I 227 -27, a7 d2 T 7i7 U- X +-- V' = ker-K-- -+-V2 + - + W T--_
Ra----t x' '' - t  y y y T ,a 2

r dy

+ dT a7- + -d- 7 2.-dd)

dy dy dy dy

0= + _ (2.12)
P T

Now, we have five equations for five unknown disturbance quanti-
ties p', u', v', p' and T, with coefficients given by the basic flow. For
uniform mean pressure and an ideal gas, we have ;7= IT. The solution
of the system of equations is now sought in the form of normal modes,
i.e. the disturbance quantities are expressed in the form

q'(xy) = q(y) e i x - ).

With

Oq = ow(y) eI axwt)
at

and

dq'

ax iiq(y) eOX761),
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equations (2.8)-(2.12) become a system of ordinary differential
equations for the qyYsY:

ixT~f- o)~ ~ 'Yv(2.13)i~ a- -- )p + ix U + V, - 0 (213
T

--- -I-~ ~ ~ [itf- ip -e[(y--4 2- i ~
-)u + iV] = + k[j(uYY+ -- )

+ ji(iT + Ty u +ixTyv + i7fTy) + i!.rTAy] (2.14)

1__(f . -) __1 -y + 2- -~ 4i- - 4---T 12= ,- ,

-+ -uy)+ Tia T+yTyvy --- Tyu)] (2.15)

1 - _ _ I -2T 2 (216-=[io(ii- )T + Tyv]I = -k7Ui(Tyy - aT) + /I 7\'yy +±yT + I~y(Ty)'i 2.6

= + T 0 (2.17)
P T

where ( ) dy

relating p to T by the state equation and rearranging equations such
that the highest order differentiation term for each variable is moved
to the left-hand side, we have the following equations.

dv= -)T + (2.18)
dy TX

d 2 2 ' i3 - '0 ) +
-=c u-----iiu--T v- -= [ F~yT + T y+ idTY v+ iyTY]dy 3T PU

-_T y T + ' + - [ (u - -2 U + Fi; ] (2 .19 )

dp -i o p 4 TYi_4 yy 42-yi[

dy T -- Re {touy + T 3T 3T
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e T+12  ±T~iT + JT- Th(T)-Ej+T2T-2TiZ (.0

dy 2 i PTPrr-

+ - [i(ii- O-)T + v] (2.21)
!IT

The result is the system of five coupled first-order ordinary
differential equations for p, u, v, p and T which, together with the
boundary conditions, represents an eigenvalue problem with either the
wavenumber a or the frequency co playing the role of eigenvalue.

2.3 BOUNDARY CONDITIONS

Boundary conditions are specified by the requirement that the
perturbation can't be felt in the the far-field region, i.e. lyl-*oo,
and that the disturbance distributions, (y), (y), y) and i7y) are even
or odd functions of y for a symmetric base flow. When y - +oo,

p = p = I and ii = R_, and the disturbance equations become of constant
coefficient type. When substituting for the disturbance quantities
[u, v, p, T,]=[C,, C, C3, C4] eBy, where C and B are constants, three ex-
ponentially decaying solutions are found, representing asymptotic
solutions when y- +oo

U-i

~e-'M (2.22a)

T 0
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V1

e- fly  (2.22b)

p 0

0

e- Y  (2.22c)

?y PrRe

where f = Ri,- + OC, Real(3) > 0

and R = P, Ri4, --. + X2 , Real(C) > 0

The boundary conditions at y0O are as follows. For the sinuous
(odd) mode u= 0 p=O T=O, for the varicose (even) mode

V=0 u=0 -T,=0.

In case of infinite Reynolds number, the disturbance equations
(2.13)-(2.17) can be reduced to the simple form,

2_ aP + 22 du-= 0, (2.23)

dy p -dy u dy dy

with boundary conditions aty- +oo

.- e- aY , (2.24)

and at y=0, p=0 for the sinuous mode andp =0 for the varicose mode.
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2.4 THE NUMERICAL METHOD

To determinate the stability character for the given base flow,
the dispersion relation is found numerically. The branch point wo,
defined by (1.3), is found by two steps, following the numerical ap-
proach used by Sohn (1986). First, eigenvalues are found by a standard
shooting procedure. For the numerical integration a standard 4th-5th
order Runge-Kutta-Fehlberg scheme with stepsize control was used.
Following Monkewitz (1978), solutions were kept linearly independent
by pseudo-orthogonalization during integration. Then, to search for
the branch point ao, two eigenvalueswo, andco2 associated with the cor-
responding wavenumbers, a-(wo,) and o(0o2 ), are used as initial guesses to
predict the branch point 0o by extrapolation, using the relation

)- _ + Cs(CO _ + +C( -coo)+ .... (2.25)

which is obtained directly from the Taylor expansion of the dispersion
relation around the branch point coo (see definition (1.3)).

0= co + '_ o)2a )! ). (2.26)
2 da2

Using equation (2.25) and two initial frequency guesses co, 2 with four
corresponding o and o, wo, 7a Csand CL are determined. A new frequency
w03=(0o2 +o)/2 is chosen instead ofco, as new initial guess and the pro-
cedure is repeated until the last two branch point extrapolations are
equal to within the required convergence criterion.

2.5 RESULTS OF LOCAL STABILITY CALCULATIONS FOR HEATED JETS AND WAKES

For the calculations parameters R, P,,S, A and N have to be speci-
fied. For jet flows calculations have been carried out at infinite
Reynolds number, because in the region of interest R,> 101 the quanti-
tative differences between inviscid and viscous calculation found by
Morris (1983) for axisymmetric jets are relatively small and do not
justify the considerable increase of computation associated with finite
Reynolds numbers. Furthermore, for a two-dimensional jet into stagnant
fluid, the velocity ratio, A defined by equation (2.1) is equal to 1,
and the Prandtl number is assumed to be constant P,=0.71. Hence, only
the parameters S and N are varied systematically in the jet. Finally,
based on the calculations, the sinuous mode is more stable than the
varicose mode in jet flows. Therefore the following study concentrates
on the latter.

The complex branch points 0oo as function of N are shown in Figure
5 for varying density ratio S. The corresponding complex saddle
points, i° are documented in Figure 6. From the absolute growth rate,
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coo, it follows that local absolute instability first occurs for S=0.9
and a mean flow profile with N=5. For S lower than 0.9, local absolute
stability occurs in an interval of N. Hence, according to Chomaz,
Huerre and Redekopp's model study, mentioned in section 1.3, the 2-D
hot jet has the potential for global instability when the density ratio
S<0. 9.

To complete the stability analysis for 2-D flows with non-uniform
density, calculations were also carried out for 2-D wake flows at low
Reynolds numbers, where Kirman vortices have been successfully sup-
pressed by heating the wake, as in Strykowski's experiment (1986).
In the wake case, the more unstable sinuous modes are of primary in-
terest. The absolute instability boundary, where w'=0, plotted in the
S-N- plane is shown on Figure 7 for wake model profiles with reverse
flow (A=-1.25) and with zero mean velocity on the centerline(A=-I),
under the assumption of constant viscosity. It is shown that for the
homogeneous wake S=1, local absolute instability occurs in a certain
interval of N, which corresponds to the "oscillator" behavior in the
homogeneous 2-D wake, i.e. Karman vortex shedding. The absolute
growth rates are reduced by decreasing S and all local absolute in-
stability is eventually eliminated when the density ratio is suffi-
ciently low, depending onR, andA. As in the homogeneous case one finds
that, while viscosity decreases the size of the absolutely unstable
region for a given density ratio, reverse flow increases it. The latter
seems to have a more significant effect on the instability of wake
flows.

To see how much heating is necessary to suppress the global Karman
mode, more calculations were carried out to search for the critical
density ratio corresponding to zero growth ratewo'=0 which defines the
boundary between absolute and convective instability. Also considered
were some fluid property effects other than density effects on the jet
stability. As heating is an easy way to create a non-uniform density
flow in the lab, the effect of mean temperature variation on fluid
properties, such as viscosity and heat conduction coefficient were
studied. For example, the viscosityp and specificC, of air at ambient
pressure will increase 19.8% and 0.56%, respectively, from a temper-
ature of 200C to 1000C with the Prandtl number decreasing 1.26%. The
variation of viscosity is comparable with the density decrease, 21.5%
in the same temperature range. To examine whether the viscosity var-
iation contributes significantly to the stability behavior of the flow,
stability calculations are also carried out without the assumption of
constant viscosity. For this Sutherland formula forii(T) (Section 2.1)
was used and Cand P, were assumed to be constants. The boundary, where
the maximum grow rate c is zero for all N, is plotted on the S-R plane
in Figure 8 for two values of A. Below the curves, modes with zero group
velocity have negative growth rates wc< 0 for all N, and the flow system
is convectively unstable. In other words absolute instability is sup-
pressed by heating. The variable viscosity effect is shown to be
relatively small compared to the density effect. On the same figure
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the S required to suppress Karm~n vortex shedding (Berger & Schumm,
1988) is also indicated. For this, the relation between RID) based on
the cylinder diameter and the profile Reynolds numberR, as well as the
A,,, has been estimated according to Monkewitz (1988). The experiment
again confirms the scenario of Chomaz Huerre & Redekopp in which global
stability is guaranteed if the flow is everywhere convectively unsta-
ble.
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3. EXPERIMENTS ON A 2-D HOT JET

3.1 FACILITY AND INSTRUMENTATION

Facility

The facility used to produce a two dimensional hot jet with aspect
ratio of 20:1 is shown on Figure 9. A variable speed blower connected

to a long duct delivers air into an acoustic filter, which is lined
with fiberglass to eliminate acoustic noise. The cold and quiet air
then passes through a 6.5 KW heater packed with aluminum wool, which
makes air velocity and temperature distribution more uniform. A two-
dimensional divergent-convergent settling chamber is acoustically
lined with 1" thick fiberglass and a layer of steel wool is installed
in the middle of the chamber to reduce turbulence and further smooth
the temperature distribution. A piece of honeycomb and several screens
are then installed to straighten the flow and eliminate large eddies.
A final 10:1 contraction with smooth Formica as inside surface and

fiberglass as outside insulation provides a nozzle of 15mm x 300mm,
pointing vertically up. The streamwise direction is denoted by x, the
definition of the y and z coordinates is indicated on Figure 9.

Two plexiglass plates, good for photography, are fixed on both
sides of the nozzle , parallel to the x-y plane, to prevent the jet
spreading in the z-direction at the two ends, thus improving the 2-D

characteristics of the jet. The hot air is forced out of the room by
an exhaust fan.

Acoustic noise level

Great care was taken to quiet the facility. In addition to the
use of fiberglass in the settling chamber and the acoustic filter, the
level of acoustic noise in the laboratory was minimized by carrying

out the experiments at night with no traffic in or around the building,
by switching off the exhaust fan during data acquisition, and by moving

the blower and the electronic equipment with cooling fans out of the
room into the hallway. The resulting RMS turbulence level in the nozzle
exit plane of the unheated jet was determined with a constant temper-
ature hotwire and found to be less than 0.06% for a jet velocity of
4.46m/s. The streamwise velocity spectrum recorded at x/H=O and y/H=O
in the potential core is shown on Figure 10(a). The pressure spectra
of the background noise with the jet turned off is shown on Figure 10(b)

to document the dominant noise frequencies, originating mainly from
the building the air conditioning and ventilation system.
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Instrumentation

For the experiments the facility was instrumented as follows.
The operating parameters, jet temperatures and velocities, were ob-
tained from a chromel-Alumel (K-Type) thermocouple probe with a junc-
tion of 2 mm diameter and a MKS pressure transducer type 398HD with a
total head probe of 1 mm diameter. The thermocouple and pitot/pressure
transducer were also used to calibrate a DANTEC hotwire anemometer in
constant current and constant temperature mode for local turbulent
temperature and velocity measurements, respectively. The probe had a
5um platinum-plated tungsten wire with a working length of 1.25 mm.
In constant current mode, the resistance of the wire is measured which
depends on temperature only. Hence temperature information can be
detected in this set-up without being affected by velocity fluctuation.
In constant temperature mode, an overheat ratio of 0.8 was set for
velocity measurements in the homogeneous jet. The mean data were ob-
tained by a DANTEC mean value unit Type 56N22 with integration time
up to 1000 seconds. The fluctuating data were collected by a HP 3400A
RMS voltmeter and/or a HP 3582A Spectrum Analyzer, which was connected
to a X-Y recorder. The near-field pressure outside the jet was moni-
tored by a 1/2" B&K microphone fitted with a standard protective cap
to shield it from the entrainment flow.

Flow visualization was carried out with Schlieren optics shown
on Figure 11. This system was based on two spherical mirrors of 6
inches diameter and 60 inches focal length. A XENON (Model 437B) 20ns
spark gap and a 2mm diameter pinhole were combined to provide the light
source. The photographs were taken with an Iris instead of the knife
edge to obtain equal sensitivity in all directions.

Operating range

Limited by the temperature tolerance of the fabrication material,
plywood, the experiments have been carried out with jet temperatures
ranging from ambient, which was always close to 20,C, to 1300C The fa-
cility can provide a hot jet with density ratios down to 0.72. Under
such conditions, a Reynolds number of about 7000 can be attained, with
a corresponding Froude number, defined as S'I[H(I- S)g]-' , of about
2900, at which buoyancy forces can be neglected in the near field of
the hot jet.

Symmetry of the mean flow

T e mean velocity and temperature profiles in the nozzle plane
are documented to show the quality of the 2-D hot jet facility. The
mean temperature variation along the z-direction, excluding the
boundary layer region, in the range of -6.7 < z/H < 6.7 is less than
3% of the temperature difference between jet centerline and ambient,

AT= T-T , for q=0.79 mm120 as shown on Figure 12. Temperature
distribution in the y-direction are quite symmetric around y=O and are
almost duplicated at the stations of z/H=-6.7, 0, +6.7, with the var-
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iation less than 5% of AT, as illustrated in Figure 13. The thermal
boundary layer thickness, defined by AT1(dT1dy)mu, is about 0.14 jet
widths. The velocity profiles in the z-direction are uniform except
for some deviations on both ends as shown in Figure 14. The velocity
profiles in the y-direction are shown in Figure 15 for the cold jet,
illustrating the symmetry during the flow development. The initial

momentum thickness for the cold jet was measured to be 0_ 1.14 dem-
onstrating laminar initial conditions. if yR

3.2 FLOW VISUALIZATION

To visualize the 2-D heated jet, the Schlieren optical system was
aligned such that the light beams in the test section were parallel
to the z-axis of the jet, as shown on Figure 11, with the receiving
lens focusing at the z=0 plane.

The Schlieren images in Figure 16 show the qualitative difference
of the vortex structure in the near-field of a slightly heated jet with
S=0.90 and a hot jet with S=0.73 where S=p/p. is the ratio of jet and
ambient density. In the former case, vortices evolve gradually in the
shear layers from small wavy structures to larger and larger vortex
pairs by vortex pairing. In the hot jet, on the other hand, large
vortex-pair structures form immediately after an initial, virtually
undisturbed jet region. Furthermore, different Schlieren images under
the same hot jet condition were observed as shown in Figure
15(d)-15(f). These large vortex structures were found to be quite
symmetric about the jet center line, corresponding to the varicose
instability mode. The observations were repeated for other hot jet
condition as shown in Figure 17. These findings suggest that the hot
jet column is self-excited in contrast to the slightly heated or cold
jet. Before proceeding to a quantitative examination of the jet os-
cillations by spectral measurements, side-view Schlieren are shown on
Figure 18 to document the 2-D characteristics of the vortex pairs near
the nozzle. It shows that the hot jet oscillations under consideration
remain 2-D up to approximately x/H=4, where 3-D disturbances seem to
become important. This observation implies that the first vortex pair
is essentially 2-D since it forms at x/H less than 4.

3.3 SPECTRAL DATA IN THE NEAR-FIELD

3.3.1 Velocity and temperature spectra

To characterize the jet behavior, three fluctuating quantities
-velocity, temperature and pressure- are examined in the frequency
domain.
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In the Reynolds number range we study, 4,000 < R, < 7,000, the
near-field sound pressure level of the jet is about the same as the
acoustic noise of the enviroment. Near-field pressure spectra detected
by the microphone therefore do not have a good signal to noise ratio.
However, it provides a reference of noise frequencies. On the other
hand, the hot wire is less sensitive to acoustic noise and consequently
has a better signal to noise ratio, but it is sensitive to both velocity
and temperature fluctuations which exist in a nonhomogeneous hot jet
flow. For a hot jet, the combined use of velocity and temperature
signals is necessary.

The selection of measurement locations

Samples of velocity, temperature and pressure spectra in the
entrainment region are shown on Figure 19. Figure 19(a) illustrates
the uniformity of the temperature of the hot jet in the entrainment
region (outside the jet shear layers) with a turbulent intensity less
than 0.06% of AT. Therefore, the spectral data in the entrainment region
obtained by the H.W. probe in constant temperature mode is due to ve-
locity fluctuations. At the same location as the temperature spectra,
velocity spectra of the hot jet are shown on Figure 19(b). The dominant
frequencies, i.e. the peaks on the spectra, are the same as the ones
measured by microphone and shown on Figure 19(c), but do not correspond
to the peaks of the external noise spectra on Figure 10(b). Since
velocity spectra have a better signal to noise ratio than pressure
spectra in our operating range, mainly velocity data are collected in
the entrainment region. In the shear layers of the hot jet both tem-
perature and velocity fluctuations are comparable. Therefore the
hot-wire was operated in constant current mode such as to sense only
temperature.

Velocity and temperature spectra in the hot jet

The near-field velocity spectra of the cold and hot jet, shown
on Figure 20, were obtained with the hot-wire probe inserted in the
entrainment region outside but close to the shear layers (see for in-
stance the hot-wire probe location in Figure 17c). As shown by these
velocity spectra, a cold jet has a broad band spectrum while the hot
jet spectra are line-dominated with a substantial harmonics content,
which suggests an oscillator behavior. The temperature spectra in the
shear layer, shown on Figure 21, also display the change from the broad
band spectrum of a slightly heated jet to the line-dominated spectrum
of the hot jet with S<0.9. With the latter spectra , the hot jet is
reminiscent of cylinder wakes which display a limit cycle oscillation.
However it is clear from the flow visualization that the hot-jet os-
cillation is dominated by the even (varicose) mode, in contrast to the
odd (sinuous) mode in wake flows. That is in agreement with the
predictions of linear stability theory. Also, as predicted by linear
theory, lower density has opposite effects in wake and jet flows. The
present experiment has shown that heating the jet promotes oscil-
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lations, while large vortices in wake flows are suppressed by heating
the wake as in Strykowski's experiment (section 2.5).

The self-excited nature of the jet oscillation

The dominant frequencies in an oscillating hot jet, i.e. the peak

values in the spectra, are the same at varying locations in the near-
field under the same flow conditions, but different from those of the
noise spectrum detected by a sensitive microphone when the jet flow
is turned off. This indicates that the dominant modes are not due to
the amplification of ambient noise. Furthermore, the quiet spectrum
right after the nozzle, already shown on Figure 10a, eliminates the
possibility of acoustic cavity resonances in the settling chamber.
Therefore, it is concluded that the nature of the oscillation is in-
trinsic and self-excited for density ratios SO0.9 , as opposed to the
convective nature in a cold jet. Hence, all Lhe spectra for SO0.9
correspond to a nonlinear stable saturation state, i.e. limit cycle.

3.3.2 The Dominant Strouhal Numbers

The Strouhal number dominating the near-field spectrum close to

the nozzle is plotted on Figure 22 for all cases during the present
experiments in which line-dominated spectra were observed. They were
all found to be in the range of 0.12 to 0.33, which is consistent with
the stability calculations in Chapter 2 : Figure 5 gives in the region
of absolute instability a typical value of oz-1.4 for the absolute
frequency, which corresponds to a Strouhal number St=]7-IIUzO0.22. This
supports the notion that the observed strong oscillations are related
to absolute instability, i.e. to feedback by upstream vorticity waves.

3.3.3 The character of the bifurcation to self-excited oscillations

As already shown in Figure 21, the broad band spectra become
line-dominated with decreasing density ratio. When the normalized
amplitude of the dominant spectral line is plotted as function of
density ratio, a Hopf bifurcation is found as illustrated in Figure
23. The similarities to the global behavior of the cylinder wake, as
investigated by Provansal, Mathis and Boyer (1987) and others, become
apparent. According to Landau's theory, in the small region close to
the critical control parameter (density ratio S in this case), the
amplitude of an unstable system, can be described by equation(3.1) in
the case of zero forcing

d - C, I.41- C21 A13 (3.1)

di

where the temporal growth rate C, is to leading order proportional to
(S,,,-S). ForC'>0, the cubic nonlinearity limits the amplitude, and the
saturated amplitude, A,,,, is found to depend on S as
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Asato(Scrit- S)11 2 ; S:5Scrjt (3.2)

The data in Figure 23 for the lowest frequency peakf. have been fitted
with this relationship, leading toS ,,,=0.92.

For a self-excited hot jet, the maximum (with respect to the y-

direction) amplitude of the dominant spectral linesf. and 2f. at dif-
ferent streamwise locations is documented in Figure 24. At x/H=3, the
energy off, reaches a maximum, marking the approximate point where the
first strong vortex pair is observed.

3.4 NONLINEAR PHASE LOCKING

3.4.1 Introduction and definition of bicoherence

In section 3.3, the power (or amplitude) spectrum has been used
to analyze the frequency content of the velocity and temperature
fluctuations in a hot jet. If the fluctuating signal in the time domain
is a superposition of normal modes, with phases varying independently,
the power spectrum describes the signal completely (Knisely & Rockwell,
1981). However, if a spectral component with frequencyf, is a product
of nonlinear coupling between two frequenciesf andf , then the power
spectrum can't provide sufficient information about this nonlinear
interaction. For this the bispectrum and its normalized form, the
bicoherence spectrum, have been useful tools. Hasselman, Munk &
McDonald (1963) used bispectrum estimates to study geophysical flow.
Kim & Powers (1979) analyzed and interpreted plasma fluctuation data
by the bispectral analysis technique. Lii, Rosenblatt & Van Atta
(1976) used the bispectral estimates to show the direction of energy
transfer between the frequency components of the velocity field.
Knisely & Rockwell (1981) applied bispectral estimates to study non-
linear flow in an impinging shear layer. Miksad et al. (1982,1983)
used bicoherence spectral measurements to investigate the nonlinear
interactions in a laminar 2-D wake during transition to turbulence.
Corke (1987) studied nonlinear phase locking in an axisymmetric homo-
geneous jet by examining the cross-bicoherence between the unsteady
pressure at the lip and velocity fluctuations at different streamwise
locations.

To define bicoherence, it is necessary to recall the definition
of bispectrum and the Fouier transform of a real and stationary signal.
If a fluctuating signal in the time domain, e.g. the temperature
fluctuation measured at a point in a mean-steady hot jet, has a discrete
Fourier representation

V) , V e2 i2 4

m=-.V
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where X is the complex Fourier amplitude at frequencyf. and has the
relation X, = A2 ( * indicates complex conjugate). f, =m/T and T is the
record length of 4t). The bispectrum for any two frequenciesf, andf
is defined as (Kim & Powers, 1979)

B(fk, ]) = E[ XkXXk+,]

Here E[ ] denotes an expected value. Physically, the bispectrum meas-
ures the production of a third wave with frequencyf. from the coupling
interaction of the primary waves atf, andf. The wave frequencies
(f,,k f.) must satisfy the resonance conditionf.=f,+f. The bicoherence
spectrum is a normalized version of the bispectrum and is defined as

)9= I B(fk, f1
SE[IXkX 2]E[ I Xk, 2] (3.3)

where I I denotes the modulus. The bicoherence spectrum is bounded by
0: !bWf): 1. If three spectral components at frequencies f,,f,,. are
coupled to one another, a phase lock exists and the bicoherence kfi, f)
yields a nonzero value. If these three spectral components are inde-
pendent of one another, f,, f) is close to zero.

3.4.2 Data acquisition and processing for bicoherence

The temperature signal of a heated jet, obtained by a DANTEC
hot-wire anemometer in constant current mode, as described in section
3.1 was fed into a low-pass filter (KROHN-HITE Model 330A) with 250
Hz cutoff frequency. This analog signal was then amplified and sampled
with a 12-bit analog-to-digital converter (MetraByte's DASH-16) at a
sample rate of 600 samples per second, and recorded on a IBM PC-AT
compatible. Each record contained 81920 samples of the temperature
signal corresponding to 135.53 seconds of real time. To estimate
bicoherence, each record was divided into 80 consecutive blocks of 1024
samples. Each block was then fast Fourier transformed withAf= 0.586Hz
resolution (Oppenheim & Schafer, 1975). The 80 spectra, each con-
sisting of 1024 complex numbers corresponding to the amplitude and
phase for frequencies between -300 Hz and +300 Hz at intervals of Af
were stored in memory and the bicoherence was evaluated from each
spectrum according to definition (3.3). The average amplitude spectrum
was also calculated to find the dominant frequenuies and to compare
with the results obtained by the HF spectral Analyzer. The samples
are shown on Figure 25 which is to be compared with Figure 21a.

The domain of bicoherence spectrum, b1f,), is limited by the
Nyquist criterion. The absolute values off, f, andf7+f should be
smaller than or equal to the Nyquist frequencyfv. It is noted that,
due to the symmetry of the bicoherenceb(f,,D, =b,f,) andX_ =X. for the
Fourier amplitude, it is only necessary to calculate the bicoherence
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in a triangular domain given by0:fk:!L, AKfSf:v-fk. If we are only
interested in the coherence of a partiular frequency, e.g. the domi-
nant frequencyfo in hot jets, with other frequencies, then only bf,,
needs to be calculated.

3.4.3 Test of the bicoherence computation

To test the bicoherence estimator described previously, we gen-
erated a test signal which involves three oscillators with frequencies
f, A and=f3=f+A

xt)= A1 cos21rft + 0) + A2 cos27rft+ 02)+ A3 cos(2nf3t+ 03) (3.4)

where the amplitudes A1,A2 and A3 were chosen to be close to the peak
amplitudes found in the hot spectrum as shown in Figure 25a, i.e.
f:,fz2f£andfz3f, (see Figure 26a). First, the effect of phase-locking

was verified by computing Wf, f) for 03= 0,+ 02 (with 01and 02 random) which
yields bWt, f)= 1 (Figure 26b), and also for all three phases radom
(Figure 26c) which yields a bW, f2 ) near zero.

To test the effect of signal-to-noise ratio on the bicoherence
estimates, the phase-locked signal of Figure 26 was superimposed with
the noisy temperature fluctuation in the slightly heated jet of Figure
25. The decrease of t j,f2 ) from 1 to 0.88 indicates that the maximum
bicoherence depends on the signal-to-noise ratio of the data as pointed
out by Corke (1987).

3.4.4 Results from bicoherence estimates

Phase locking in hot jets

The bicoherence of the dominant frequencyA with other frequencies
in the hot jet at several streamwise locations is shown in Figure 28.
The peaks of Wf 0,) and b

2f0,2f0) indicate the phase lock between the pri-
mary harmonicsA and2f0 when x > 1.5 approximately. On the other hand,
in a slightly heated jet, where the amplitude spectrum has no obvious
dominant frequency, f of the hot jet is still used for the bWfP cal-
culation since the dominant frequency is almost independent of the
density ratio if the total head remains constant, as shown in Figure
21(a). The bicoherence bJ,) of a slightly heated jet at different
streamwise location is shown in Figure 29. The much lower values of
bWf0,J), close to zero indicate the lack of phase coherence betweenfA
and other frequencies.

Bicoherence as a function of streamwise location

In Figure 30 we show the distribution of bicoherence Rf/,f 0) and
bWf],2f,) in the hot jet along the streamwise direction. It is noted that
no phase locking appears at x/H close to zero, which is probably due
to a low signal to noise ratio in this region of low oscillation am-
plitude, while the maximum bicoherence is found around x/H = 2.5.
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Bicoherence versus density ratio

In Figure 31 the bicoherence b(,J) of the hot jet is shown for
different density ratios. If b,,f.) and bf, 2f0) are plotted versus den-
sity ratio, again a critical value of S=0.9 is obtained below which
phase locking occurs, in good agreement with Figure 23.

3.5 MEAN FLOW DATA

Mean velo,ity and temperature profiles of an oscillating hot jet
are shown on Figure 33 and Figure 34, respectively. For x/H = 4,6,
intermediate plateaus appear in the shear layers at the location of
the large mixed vortex cores. This is further evidence for the highly
organized nature of the large vortex-pair structures implied by the
near field-spectra and the flow visualization. The center-line ve-
locities of the self-excited hot jet and cold jet are shown in Figure
35. The earlier decay for the self-excited hot jet indicates enhanced
mixing in comparison with the cold jet at same Reynolds number.
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4. FURTHER INVESTIGATIONS

4.1 GLOBAL LINEAR STABILITY ANALYSIS OF NONPARALLEL FLOWS

(WITH P. HUERRE AND J.M. CHOMAZ)

The stability of spatially developing free shear flows, such

as jets and wakes, is studied under the assumption that the

streamwise development of the base flow, characterized for instance

by its the local momentum thickness 6(x), is "slow" on the scale of

a typical instability wavelength A, that is

e A/[d(1nO)/dx] << 1 . (4.1)

To simplify matters, we consider only doubly-infinite, two-

dimensional, incompressible, and inviscid base flows without

boundaries and seek time-periodic perturbations thereof -

henceforth termed global modes - which vanish at infinity in all

directions. Of particular interest are systems which exhibit

supercritical (Hopf) bifurcations to global oscillations, which, in

general, entails local absolute instability over a finite x-

interval. To simplify further, it is assumed that at each x-station

the local dispersion relation k(w) has only one square-root branch

point wo(x) or, in other words, that it has only two branches: an
"upstream" branch k" and a "downstream" branch k+.

For infinitesimal (linear) disturbances, P. Huerre, J.M.

Chomaz and this author have demonstrated (paper in preparation)

that the eigen-frequencies wG,n of the most amplified global modes

are determined by the connection of the "upstream" and "downstream"

waves through a double turning point region around the complex

location xt, defined by

dw0 /dx(xt)-O , (4.2)

which, loosely speaking, may be viewed as a "wavemaker". It is

thereby assumed that w has only one saddle point xt, which means

that the absolute growth rate woi has a simple maximum on the real

x-axis, and that the flow contains only one interval (of the real

x-axis) of absolute instability (i.e. woi>0). Local stability

calculations show that this latter assumption is justified in jets

and bluff-body wakes which are of primary interest here. Since this

linear analysis has not been published yet, it is briefly

described. The starting point is the Euler equation, linearized

around the mean stream function 0 (y,X), where X-ex is the slow

scale characteristic of the mean flow development. Following
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Crighton and Gaster (1976), the instability waves far up- and

downstream are given by the WKB approximations

T A±(X) $(y;X) exp[ JkidX - 'wGtj (4.3)

e

The branches ± are selected such as to satisfy the boundary

conditions at IxI- . With the definitions adopted here, the

appropriate subdominant branches far up- and downstream are k" and

k+ respectively. Moving on to the problem of connecting the two

waves, and determining the eigenvalue wG' one finds that the WKB

approximation breaks down at potential matching locations where the

group velocity is zero, i.e. where wG-woo(x) and k'-k+. For the

assumed structure of wo(x) with one saddle point at x t the two

pairs of curves in the complex x-plane wor-const. and woiconst.

only intersect at x t if Wo=Wt, where w o(xt)-wt. As in quantum-

mechanical scattering problems, this point xt is a second order

turning point of the "inner" problem which allows the connection

between the upstream and downstream waves for eigenvalues

WGwut+O(C) . (4.4)

Therefore, a global mode can only become self-excited (time-

amplified) if w ti>0. By analyzing the neighborhood of the saddle

point at xt, Chomaz et al. (1989) show that the "hills" must be

arranged as on Figure 36. This means that, if wt,i>O, there must be

a region of absolute instability with wo,i>O on the physical, real

x-axis. To analyze the inner region the streamwise coordinate is

appropriately rescaled as

= e1 /2 (x-xt) - C_1 / 2 (X-Xt) (4.5)

Because the basic flow is parallel on the scale , one finds that

the transverse structure of the disturbance * is frozen and given

by Z(y;-O), thus leading to

- A( ,r) 4'(y;..O) exp[ik(wot)x - iWtt] ; r-ft (4.6)

Expansion of the basic flow Yo(y,X) in a Taylor series around X t

then yields, by the method of multiple scales, for the amplitude

A(A,r) a linearized Ginzburg-Landau equation with variable

coefficients,

aA B 2 A aA
+ C 2  2 + CI- + (C 0 0 +C0 2 

2 ) A - F( ,r) , (4.7)
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where a forcing term F has been added for later reference (F-O for

free global modes), and the Cn are complex constants obtained from

solvability conditions, i.e. given as y-integrals over functions of

*0 (y;X) and Z(y;X) and their derivatives. In Fourier-space this

equation (4.7) corresponds to the dispersion relation

w 2  6w - (wkk/2 )K 2+ +wx + (xx/2 ) 2 ;

w2 -l(w-wt) ; r - C 1/ 2 (k-kt) , (4.8)

where 6w is a genuine nonparallel frequency correction, and wkk,

wkxand wxx are complex coefficients related to the Cn by

Coo = i 6W

C0 2 = i (Wxx/2)
(4.9)

CI = kx

C2 = -i (wkk/2)

In terms of the rescaled absolute frequency w20 and corresponding

wave number o' equation (4.8) is

w2 - 2o( ) = (wkk/2 )[I - xo ( )]2 ; (4.10a)

W2o( ) - (I/2)[wxx-(w2kx/wkk)] 2 . (Woxx/2) 2 ; (4.10b)

Ko( ) = - (wkx/wkk) la kox . (4.10c)

With Acexp(iw2r) the solution of (4.7) is given in terms of Hermite

polynomials Hen and the "remainder" of the eigenvalue w2  is

determined such as to ensure the asymptotic match to the "outer"

solutions 41'.

An( ) - exp(( 2/2)[ikox-(woxx/ukk)1/2 ]) Hen[(4woxx/kk) 1/4]

w2n - 6w -(i/ 2 )ukkkox + (woxxukk) 1/2 [n+(1/2)] (4.11)
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4.2 FEEDBACK CONTROL OF GLOBAL OSCILLATIONS

In a further investigation, the equation (4.7), valid in the

turning point region around xt, has been used as a model to study

the effect of the simplest possible, nonlocal feedback control on

the evolution of global modes (Monkewitz, AIAA paper no. 89-0991,

1989). For this, the forcing term in (4.7) was specified as:

F( ,r) - G 6(- f) A( -s,r) , (4.12)

where the delta function 6( -f) describes a localized actuator at

f, A( -s,r) is the wave amplitude measured by a sensor at s, and

G is a fixed (complex) feedback gain. Without going into the

specifics, which can be found in the paper, the main results can be

summarized as follows:

When the control (4.12) is applied to a globally stable

system, it is not surprising that feedback can be destabilizing.

What is interesting, however, is that, for the particular jet flow

considered in the paper, it is in general not the least-damped

mode, but some higher mode that is destabilized by feedback. It

appears from experiments of Berger (1964) that this feature is also

a property of other, quite different systems, such as the cylinder

wake.

When attempting to use this simple control for the

stabilization of a globally unstable system, one finds that this is

only possible near the onset of global instability. The reason is

that the requirements of a minimum gain to stabilize the unstable

"fundamental" mode, and of staying below the critical gain, at

which some higher mode is destabilized, quickly become

incompatible. This behavior is in complete qualitative agreement

with the experiments by Berger (1964) in the wake of an oblong

cylinder.
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Figure 1 Sketch of typical impulse response for (a) Absolutely
unstable flow (b) Convectively unstable flow. (from
Konkewitz, 1989)
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Figure 2 Local and global stability calculations by Hannemann (1988)
for wake flow, (a) numerical simulation of wake flow used
to calculate stability characters, (b) the growth ratew,
and frequencywo, calculated by local linear theory(-) and
global simulation (--). 0 global frequency in nonlinear
state, 0J global frequency in linear regime.
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Figure 3 Sketch of the typical x-dependence of the local maximum
temporal growth rate co,.,(-) and the local absolute growth
rate w,( .... ) in free shear flows for the case of: (a)
uniform local stability; (b) local convective instability;
(c) local absolute instability.
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numbers of 20(0), 50(A), 100(0), and velocity ratio
A =-I (-) and A =-1.25 (--) with viscosityp = constant.
The regions of absolute and convective instability are
marked by A and C, respectively.
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Figure 8 Absolute instability boundary of the variable density wake
in the S-R plane, forA =-I1 (0) andA =-.25 (L), with

p = constant (-), and p = (T) (--). Experimental global
instability boundary (0) from Berger & Schumm, 1988.
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Figure 10 (a) The level of turbulent intensity of the 2-D jet facility
at x=y-z=0 for q=1.25 mmH2O, and (b) the acoustic pressure
spectrum of the background noise with the jet turned off
(microphone at x/H - 2, y/H - 1.3)
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Figure 11 The Schlieren system
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Figure 12 Mean temperature profile T(z) at xy=O for q=0.79 mmrH 2O
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Figure 14 V(z) at y0-, q=0.75 mmH2O, S1l, x/H0O(-) ,x/H=8

48



49



00

Figure 16 Spark Schlieren Views of the slightly heated jet and
self-excited hot jet (20 ns exposure time; length of 'T'
mark =jet width) (a) Slightly heated jet with S= 0,1p.,
=0. 90 (I Fc 42 ( I q=1.O04 miI.()1, ( b) Slightly heated jet with
S= 0 90(1 -42 ()I q=1. 31 tni/H) (c) Hot jet with S=0. 73
/. I.C 1=1 1.0 ( mm/H) ( d) (e) and ( f) Hfot jet with

S 0. 73 (i F 13.1 C) ,q I. .31 n I(
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Figure 17 Schlieren images of the heated jet at different density

ratio
(a) S=0.95, q=0. 76 mnfnIA
(b) S=0O.89, q=0.83 ,rn/l,(

(c) S=0.81, q=0.75 tnn, 2

(d) S=0.81, q=0.7 5 tIfl1h,O

(e) S=0.81, q=0. 75 tnvnll,()
(f) S=0.79, q=0.75 mrn, 2
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Figure 19 Temperature, velocity, pressure spectra of hot jet in the
entrainment region, x/H=1.67, y/H1l, for q=1.30mm12 0,
T = 120*C

(a) Temperature spectra
(b) Velocity spectra, the first two peaks

occur at 56, 113 Hz
(c) Pressure spectra, the first two peaks

occur at 56, 113 Hz
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Figure 21 (b) At maximum amplitude of the second peak with
frequency 2f, Spectra were obtained at approximately
y/H=O.4 for each case. From top to bottom
S=0.97,0.94,0.89.0.85, 0.82,0. 75.
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Figure 23 Amplitude of the dominant near-field temperature oscil-
lation, normalized by the mean temperature difference
AT= , versus density ratio S. + peak at
f.--54I1z ; 0 peak at 2 f . q=1.26 mmHO ,probe at
x/H=3.O. Solid curve is given by T'/ATc<(S_,1 -S)'Ii, fitted
to the data.
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Figure 24 Amplitude of dominant spectral components versus streamwise
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Figure 25 (a) Amplitude spectrum of temperature fluctuation in a hot
j et by FFT w it h S=O. 77, q=1. 26 nn1IO, at x/H=3.O, y/H=0.9
(b) Amplitude spectrum of temperature fluctuation in a
slightly heated jet with S=0.95, q= I.26mn11I,O at the same
location as in (a).
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Figure 26 (a) Amplitude spectrum of test signal (3.4) with

f, = 5511z, f; = 10411z, / =f, +f,. (b) Bicoherence f,) with
0, 0, arbitrary and 0= 0,+0 (c) Same but all phases
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Figure 27 (a) Amplitude spectrum of the test signal (3.4) as in Figure
26 superimposed on the noisy spectrum of Figure 25(a).
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Figure 28 Bicoherence 0,] of temperature in the hot jet with S=0.77
and q= 1.26 mtnl,O at different streamwise location and
corresponding y/H, where maximum amplitude of the dominant
frequency 0 was obtained. From top to bottom, x/H=0.5,
1.0, 1.5, 2.0, 2.5, 3.0, 4.0, and 5.0

67



0.2

0
0 100 200 300

0.4

0.2

o 100 200 300

0.4

0.2

0 100 200 300

0.4

0.2

0 100 zoo 300

f (Hz)

Figure 29 Bicoherence 52{o, of temperature in a slightly heated jet
with S=0.95, q=l.26mmH20 at x/H=2.0 ,2.5, 3.0, and 4.0
and corresponding y/H, being the same as in Figure 28.fo
is the dominant frequency found in the hot jet.
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Figure 31 b2{,] of the temperature disturbance at x/H =2.5 y/H=0.87.
Jet with q=1.26mm120 and, from bottom to top, S=0.77,

0.86, 0.87, 0.89 and 0.92.
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